Functional, chemical genomic, and super-enhancer screening identify sensitivity to cyclin D1/CDK4 pathway inhibition in Ewing sarcoma

نویسندگان

  • Alyssa L. Kennedy
  • Mounica Vallurupalli
  • Liying Chen
  • Brian Crompton
  • Glenn Cowley
  • Francisca Vazquez
  • Barbara A. Weir
  • Aviad Tsherniak
  • Sudha Parasuraman
  • Sunkyu Kim
  • Gabriela Alexe
  • Kimberly Stegmaier
چکیده

Ewing sarcoma is an aggressive bone and soft tissue tumor in children and adolescents, with treatment remaining a clinical challenge. This disease is mediated by somatic chromosomal translocations of the EWS gene and a gene encoding an ETS transcription factor, most commonly, FLI1. While direct targeting of aberrant transcription factors remains a pharmacological challenge, identification of dependencies incurred by EWS/FLI1 expression would offer a new therapeutic avenue. We used a combination of super-enhancer profiling, near-whole genome shRNA-based and small-molecule screening to identify cyclin D1 and CDK4 as Ewing sarcoma-selective dependencies. We revealed that super-enhancers mark Ewing sarcoma specific expression signatures and EWS/FLI1 target genes in human Ewing sarcoma cell lines. Particularly, a super-enhancer regulates cyclin D1 and promotes its expression in Ewing sarcoma. We demonstrated that Ewing sarcoma cells require CDK4 and cyclin D1 for survival and anchorage-independent growth. Additionally, pharmacologic inhibition of CDK4 with selective CDK4/6 inhibitors led to cytostasis and cell death of Ewing sarcoma cell lines in vitro and growth delay in an in vivo Ewing sarcoma xenograft model. These results demonstrated a dependency in Ewing sarcoma on CDK4 and cyclin D1 and support exploration of CDK4/6 inhibitors as a therapeutic approach for patients with this disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cyclin D1 is dispensable for G1 control in retinoblastoma gene-deficient cells independently of cdk4 activity.

To elucidate the regulator-versus-target relationship in the cyclin D1/cdk4/retinoblastoma protein (pRB) pathway, we examined fibroblasts from RB-1 gene-deficient and RB-1 wild-type littermate mouse embryos (ME) and in human tumor cell lines that differed in the status of the RB-1 gene. The RB+/+ and RB-/- ME fibroblasts expressed similar protein levels of D-type cyclins, cdk4, and cdk6, showed...

متن کامل

Cyclin D1 and CDK4 activity contribute to the undifferentiated phenotype in neuroblastoma.

Genomic aberrations of Cyclin D1 (CCND1), CDK4, and CDK6 in neuroblastoma indicate that dysregulation of the G(1) entry checkpoint is an important cell cycle aberration in this pediatric tumor. Here, we report that analysis of Affymetrix expression data of primary neuroblastic tumors shows an extensive overexpression of Cyclin D1, which correlates with histologic subgroups. Immunohistochemical ...

متن کامل

p38-mediated inactivation of cyclin D1/cyclin-dependent kinase 4 stimulates nucleolar translocation of RelA and apoptosis in colorectal cancer cells.

Aberrant nuclear factor-kappaB (NF-kappaB) signaling plays a role in cancer initiation and progression; thus, it represents a potential therapeutic target. We previously identified a mechanism of repression of NF-kappaB transcriptional activity and induction of apoptosis in colon cancer cells involving nuclear/nucleolar translocation of the RelA (p65) component of NF-kappaB. This response was s...

متن کامل

Increased cyclin D1 expression can mediate BRAF inhibitor resistance in BRAF V600E-mutated melanomas.

Recent studies have shown that there is a considerable heterogeneity in the response of melanoma cell lines to MEK and BRAF inhibitors. In the current study, we address whether dysregulation of cyclin-dependent kinase 4 (CDK4) and/or cyclin D1 contribute to the BRAF inhibitor resistance of melanoma cells. Mutational screening identified a panel of melanoma cell lines that harbored both a BRAF V...

متن کامل

Cyclin-Dependent Kinase 4 Phosphorylates and Positively Regulates PAX3-FOXO1 in Human Alveolar Rhabdomyosarcoma Cells

Alveolar rhabdomyosarcoma (ARMS) is an aggressive childhood muscle sarcoma with a 5-year survival rate of less than 30%. More than 80% of ARMSs harbor a PAX3-FOXO1 fusion transcription factor. However, expression of PAX3-FOXO1 in muscle cells alone is not sufficient and requires the loss of function of Ink4a/ARF to promote malignant proliferation of muscle cells in vitro or initiate ARMS tumor ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015